Abstract
Abstract The thermal modeling of biological systems is increasingly important in the development of more advanced and more precise techniques such as ultrasound surgery. One of the primary barriers is the complexity of biological materials: the geometrical, structural, and material properties vary in a wide range. In the present paper, we focus on the continuum modeling of heterogeneous materials of biological origin. There are numerous examples in the literature for non-Fourier thermal models. However, as we realized, they are associated with a few common misconceptions. Therefore, we first aim to clarify the basic concepts of non-Fourier thermal models. These concepts are demonstrated by revisiting two experiments from the literature in which the Cattaneo–Vernotte and the dual phase lag models are utilized. Our investigation revealed that these non-Fourier models are based on misinterpretations of the measured data, and the seeming deviation from Fourier’s law originates from the source terms and boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.