Abstract

ABSTRACTThe continuum models of two-dimensional crystal lattice of metamaterial are investigated in this paper. The equivalent classical continuum requires the introduction of frequency-dependent mass density that becomes negative or infinite near the resonance frequency. In order to avoid the frequency-dependent mass density and make the dispersive characteristic of the elastic waves propagating in the equivalent continuum approximating that of lattice wave in two-dimensional crystal lattice of metamaterial, three kinds of continuum models, namely, the multiple displacements continuum model, the strain gradient continuum model and the nonlocal strain gradient continuum model, are investigated. It is found that the nonlocal gradient continuum model may better represent the dispersive relation and the bandgap characteristics of the metamaterial by the appropriate selection of nonlocal parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.