Abstract

AbstractElastic continuum model is used to model acoustic phonons in single wall nanotubes (SWNTs). Based on elastic continuum theory, acoustic vibrational modes are modeled for both zigzag and armchair nanotubes of finite length using a variational solution of Donnell's equation. The acoustic phonon modes in these calculations are determined for both even and odd modes of the acoustic displacement. The dispersion relations vary with the length of the tube, and the results indicate that phonon bottleneck effects occur in short SWNTs. The displacement field of the nanotube is used to calculate the deformation potential interaction Hamiltonian. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.