Abstract
We present lattice QCD calculations of valence parton distribution function (PDF) of pion employing next-to-next-leading-order (NNLO) perturbative QCD matching. Our calculations are based on three gauge ensembles of 2+1 flavor highly improved staggered quarks and Wilson--Clover valance quarks, corresponding to pion mass $m_\pi=140$~MeV at a lattice spacing $a=0.076$~fm and $m_\pi=300$~MeV at $a=0.04, 0.06$~fm. This enables us to present, for the first time, continuum-extrapolated lattice QCD results for NNLO valence PDF of the pion at the physical point. Applying leading-twist expansion for renormalization group invariant (RGI) ratios of bi-local pion matrix elements with NNLO Wilson coefficients we extract $2^{\mathrm{nd}}$, $4^{\mathrm{th}}$ and $6^{\mathrm{th}}$ Mellin moments of the PDF. We reconstruct the Bjorken-$x$ dependence of the NNLO PDF from real-space RGI ratios using a deep neural network (DNN) as well as from momentum-space matrix elements renormalized using a hybrid-scheme. All our results are in broad agreement with the results of global fits to the experimental data carried out by the xFitter and JAM collaborations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.