Abstract
AbstractA continuum‐based shape and configuration design sensitivity analysis (DSA) method for a finite deformation elastoplastic shell structure has been developed. Shell elastoplasticity is treated using the projection method that performs the return mapping on the subspace defined by the zero‐normal stress condition. An incrementally objective integration scheme is used in the context of finite deformation shell analysis, wherein the stress objectivity is preserved for finite rotation increments. The material derivative concept is used to develop a continuum‐based shape and configuration DSA method. Significant computational efficiency is obtained by solving the design sensitivity equation without iteration at each converged load step using the same consistent tangent stiffness matrix. Numerical implementation of the proposed shape and configuration DSA is carried out using the meshfree method. The accuracy and efficiency of the proposed method is illustrated using numerical examples. Copyright © 2006 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.