Abstract

We consider a system of interacting particles with random initial conditions. Continuum approximations of the system, based on truncations of the BBGKY hierarchy, are described and simulated for various initial distributions and types of interaction. Specifically, we compare the Mean Field Approximation (MFA), the Kirkwood Superposition Approximation (KSA), and a recently developed truncation of the BBGKY hierarchy (the Truncation Approximation - TA). We show that KSA and TA perform more accurately than MFA in capturing approximate distributions (histograms) obtained from Monte Carlo simulations. Furthermore, TA is more numerically stable and less computationally expensive than KSA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.