Abstract

We show how momentum conservation is fundamental to the description of angular distributions in preequilibrium nuclear reactions. By using state densities with linear momentum to describe the phase space during the preequilibrium cascade, angular distributions can be derived in a transparent way. Fermi-motion and Pauli-blocking effects are included, and correlations between the emission particle's energy and angle are obtained for all orders of scattering. Our model provides a physical basis for many features of widely used phenomenological systematics of Kalbach, and provides a framework for understanding the systematical properties of continuum angular distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.