Abstract

Rate-equation analysis has been used in an investigation of the role of saturation and excited-state absorption in the power transmission characteristics and thermal lensing of an absorber. Use of an iterative approach gives explicit analytical results for power transmission and thermal focal length in the presence of excited-state absorption. Sample calculations indicate that pump absorption can increase or decrease with increasing incident pump power, depending on the relative strength of the excited-state absorption cross section with respect to the ground-state absorption cross section. In the case of thermal lensing, results further indicate that saturation and excited-state absorption act as two competing effects, the former reducing the strength of the thermal lens and the latter causing the opposite effect. The analytical formulas derived in this analysis should prove useful to experimentalists in determination of ground-state and excited-state absorption cross sections from experimental power transmission and lensing data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.