Abstract

We study continuous-time stochastic games with time-bounded reachability objectives and time-abstract strategies. We show that each vertex in such a game has a value (i.e., an equilibrium probability), and we classify the conditions under which optimal strategies exist. Further, we show how to compute ε-optimal strategies in finite games and provide detailed complexity estimations. Moreover, we show how to compute ε-optimal strategies in infinite games with finite branching and bounded rates where the bound as well as the successors of a given state are effectively computable. Finally, we show how to compute optimal strategies in finite uniform games.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call