Abstract

In vehicle control, state estimation is essential even as the sensor accuracy improves with technological development. One of the vehicle estimation methods is receding-horizon estimation (RHE), which uses a past series of the measured state and input of the plant, and determines the estimated states based on linear or quadratic programming. It is known that RHE can estimate the vehicular state to which the extended Kalman filter cannot be applied owing to modeling errors. This study proposes a new computational form of the RHE based on primal-dual dynamics. The proposed form is expressed by a dynamic system; therefore, we can consider the computational stability based on the dynamic system theory. In this study, we propose a continuous-time representation of the RHE algorithm and redundant filters to improve the convergence performance of the estimation and demonstrate its effectiveness through a vehicle path-following control problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.