Abstract
This paper presents theory, algorithms and validation results for system identification of continuous-time state-space models from finite non-uniformly sampled input-output sequences. The algorithms developed are methods of model identification and stochastic realization adapted to the continuous-time model context using non-uniformly sampled input-output data. The resulting model can be decomposed into an input-output model and a stochastic innovations model. For state estimation dynamics, we have designed a procedure to provide separate continuous-time temporal update and error-feedback update based on non-uniformly sampled input-output data. Stochastic convergence analysis is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.