Abstract

We experimentally report the generation of wavelength-tunable blueshifting soliton in the visible spectral region through a gas-filled single-ring photonic crystal fiber (SR-PCF). In particular, in a He-filled SR-PCF, we observed a sharp narrow-band spectral peak at the first resonant spectral region of the SR-PCF, which results from phase-matched nonlinear processes. To the best of our knowledge, this is the first time investigating the influence of the core-cladding resonance on the blueshifting soliton. In addition, when Ar gas was filled into the SR-PCF, some interference fringes on the blueshifting soliton were observed at high pulse-energy levels due to plasma-induced pulse fission. These two experimental observations are confirmed by numerical simulations. Furthermore, through properly adjusting input pulse energy, we found that the blueshifting soliton can obtain a high conversion efficiency (∼84%) and its wavelength can be tuned over hundreds of nanometers (∼240 nm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.