Abstract

BackgroundA proportion of Haematococcus pluvialis under the light stress can effectively conduct astaxanthin biosynthesis, leading to the increase in cell size. Although the size is a critical indicator for identifying the astaxanthin-rich H. pluvialis cells, the cut-off size to be separated varies from sample to sample. ResultsHere, we report an ultrastretchable, straight elasto-inertial microchannel with tunable separation threshold to continuously separate the light-induced H. pluvialis cells by size. The symmetrical sheath flows confine the particles to the channel sidewalls, and large particles can cross the interface of viscoelastic fluids to the equilibrium position at the channel centerline. By stretching the microfluidic chip, the medium-sized particles can gradually migrate to the channel centerline in the narrower and longer channel, bringing the tunable separation threshold. Results show that the separation performance of the ultrastretchable microfluidic device is affected by total flow rate, flow rate ratio of sheath to sample, polyethylene oxide (PEO) solution configuration. Lastly, size-tunable separation of light-induced H. pluvialis cells is demonstrated. SignificanceTo the best of our knowledge, this is the first report on cell migration in co-flow configurations in the ultra-stretchable microfluidics. Separation of H. pluvialis is not only a relevant end application in harvesting the astaxanthin-rich species, but the separated populations of highly productive microalgal cells will open a venue for cellular directed evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.