Abstract
Abstract Two linearized, vertically diffusive steady-state models are formulated on an equatorial β-plane. The purpose is (a) to investigate the vertical boundary-layer structure in a continuously stratified ocean spanning the equator and (b) to test the sensitivity of the results to different turbulence parameterizations. Both models are analytically tractable in a horizontally unbounded basin. One is characterized by Newtonian cooling, the other has biharmonic friction. For either model, the equations are analogous to the well-known equations governing equatorial wave motion. This analogy is exploited in both obtaining and interpreting the solutions. In both models, zonal wind forcing leads to features such as the Equatorial Undercurrent, South Equatorial Current and Equatorial Intermediate Current. Structures resembling the recently discovered subsurface countercurrents are also generated. The depth, velocity and other scales are model dependent but the basic dynamics are not. Specifically, near the eq...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.