Abstract

In complex scenes with light changes, deformations, and occlusions, target tracking easily contains a large amount of background color information when building a target color model. Thus, the tracking effect is reduced. To improve the accuracy of the traditional continuously adaptive mean-shift algorithm (CAMShift) in complex scenarios, a target tracking algorithm based on an improved Gaussian mixture model was proposed. Using the Gaussian mixture model, the tracking image was divided into the foreground and background superposition. The histograms of the hue component were respectively established in the foreground and background of the target area. By suppressing the same hue as the background color in the tracking image, the target color model was established. The target position was iteratively obtained by implementing the CAMShift algorithm using the enhanced target color model. The Bhattacharyya distance between the candidate target and the target template was used as basis for updating the target model. Simulation analysis under benchmark data sets and actual monitoring scenarios verified the accuracy of the proposed algorithm. Results show that the distance precision and overlap success rate of the proposed algorithm are 0.88 and 0.625, respectively. The proposed algorithm effectively solves long-term target tracking problems with complex scenes, such as occlusion, background clutters, and illumination variation. This study eliminates the problem of target recognition caused by environmental changes and provides references for real-time monitoring of abnormal traffic conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.