Abstract

Atomic heterodyne dressed by a local oscillator resonant with Rydberg transitions allows high sensitivity and robust phase measurement of a microwave electric field, but it is typically limited to detection of discrete frequencies within the narrow bandwidth of Rydberg transitions. Here we demonstrate an atomic heterodyne scheme for continuous-frequency electric field measurement based on multilevel Rydberg atoms in a room-temperature vapor cell. Driven by two off-resonant microwaves acting as a tunable local oscillator field, the heterodyne receiver can retrieve the amplitude, phase, and frequency information of signal microwave in a continuous frequency band. In our experiment, the receiver achieves an electric field sensitivity of up to $1.5\phantom{\rule{0.2em}{0ex}}\ensuremath{\mu}\mathrm{V}\phantom{\rule{0.2em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}\phantom{\rule{0.2em}{0ex}}{\mathrm{Hz}}^{\ensuremath{-}1/2}$, 80-dB linear dynamic range, and over 1 GHz of continuous frequency range. We also demonstrate the reliable reception of continuously tunable phase-modulated carriers in the digital communication. This work will facilitate the application of atomic heterodyne in the areas such as radar technique, radio monitoring, and radio astronomy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.