Abstract
A convergence theorem for the continuous weak approximation of the solution of stochastic differential equations (SDEs) by general one-step methods is proved, which is an extension of a theorem due to Milstein. As an application, uniform second order conditions for a class of continuous stochastic Runge–Kutta methods containing the continuous extension of the second order stochastic Runge–Kutta scheme due to Platen are derived. Further, some coefficients for optimal continuous schemes applicable to Itô SDEs with respect to a multi–dimensional Wiener process are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.