Abstract

Diabetic retinopathy (DR) is one of the leading causes of blindness worldwide. Non-proliferative diabetic retinopathy (NPDR) is a stage of the disease that contains morphological and functional disruption of the retinal vasculature and dysfunction of retinal neurons. This study aimed to compare time and time-frequency-domain analysis in the evaluation of electroretinograms (ERGs) in subjects with NPDR. The ERG responses were recorded in 16 eyes from 12 patients with NPDR and 24 eyes from 12 healthy subjects as the control group. The implicit time, amplitude, and time-frequency-domain parameters of photopic and scotopic ERGs were analyzed. The implicit times of b-waves in the dark-adapted 10.0 (P = 0.0513) and light-adapted 3.0 (P = 0.0414) were significantly increased in the NPDR group. The amplitudes of a- and b-wave showed a significantly decreased dark-adapted 10.0 (P = 0.0212; P = 0.0133) and light-adapted 3.0 (P = 0.0517; P = 0.0021) ERG of the NPDR group. The Cohen's d effect size had higher values in the amplitude of dark-adapted 10.0 b-wave (|d|= 1.8058) and amplitude of light-adapted 3.0 b-wave (|d|= 1.9662). The CWT results showed that the frequency ranges of the dominant components in dark-adapted 10.0 and light-adapted 3.0 ERG were decreased in the NPDR group compared to the healthy group (P < 0.05). The times associated with the NDPR group's dominant components were increased compared to normal eyes in both dark-adapted 10.0 and light-adapted 3.0 ERG (P < 0.05). All Cohen's d effect sizes of the implicit times and dominant frequency components were on a large scale (|d|> 1). These findings suggest that the time and time-frequency parameters of both photopic and scotopic ERGs can be good indicators for DR. However, time-frequency-domain analysis could present more information might be helpful in the assessment of the DR severity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.