Abstract

We demonstrate broadband continuous wavelength conversion based on four-wave mixing in silicon waveguides, operating with data rates up to 40 Gb/s, validating signal integrity using bit-error-rate measurements. The dispersion-engineered silicon waveguide provides broad phase-matching bandwidth, enabling complete wavelength-conversion coverage of the <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</i> -, <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</i> -, and <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L</i> -bands of the International Telecommunication Union (ITU) grid. We experimentally show this with wavelength conversion of high-speed data exceeding 100 nm, and characterize the resulting power penalty induced by the wavelength conversion process. We then validate the bit-rate transparency of the all-optical process by scaling the data rate from 5 Gb/s up to 40 Gb/s at the 100-nm wavelength conversion configuration, showing consistent low power penalties, validating the robustness of the four-wave mixing process in the silicon platform for all-optical processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.