Abstract

We review the progress in the development of continuous-wave optical parametric oscillators over the last decade. A recently developed theoretical analysis shows that their stability strongly depends on the group velocity dispersion of the nonlinear material used. Now, these devices generate not only near- and mid-infrared radiation, but also visible and terahertz light. Active locking to external references like atom transitions, resonators, or frequency combs enables mode-hop-free operation up to days. Furthermore, whispering-gallery-resonator-based devices enable the realization of millimeter-sized monolithic resonators with microwatt oscillation thresholds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.