Abstract

We report the continuous-wave (cw) difference-frequency generation (DFG) in a ZnGeP2 (ZGP) crystal that produces tunable long-wavelength infrared (LWIR) lasing. Particularly, we experimentally demonstrate the feasibility to drive DFG in ZGP by all-fiber near-infrared fiber lasers consisting of a 1.3 µm tunable cw random Raman fiber laser (RRFL) and a 1.5 µm erbium-doped fiber amplifier seeded by a tunable distributed feedback (DFB) laser, making the whole system compact and robust. As a result, the demonstrated LWIR DFG presents a broadband spectral tuning range spanning from 9.5 to 11.5 µm, and the output powers in the spectral range of 9.5-11 µm are larger than 40 µW pumped by watt-level fiber lasers. Meanwhile, as a typical application, a proof-of-concept demonstration of gas sensing of SF6 is executed based on the generated cw LWIR source. Our work demonstrates that the combination of ZGP crystal and fiber lasers can provide an effective and robust approach for the generation of cw LWIR radiation with useful power and broadband wavelength tunability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.