Abstract
In this paper, we report a successful combination of stimulated Raman spectroscopy (SRS) and surface-enhanced Raman scattering (SERS) using cw laser sources and gold/silica nanoparticles with embedded reporter molecules. We describe the preparation method for our gold/silica nanoparticles as well as the effect of probe wavelength, pump and probe power, polarization and sample concentration on the cwSESRS signal. Altogether, a stable ~12 orders of magnitude enhancement in the stimulated Raman signal is achieved because of the amplification of both pump and probe beams, leading to the detection of pico-molar nanoparticle concentrations, comparable to those of SERS. The coherent Raman spectra matches the incoherent conventional Raman spectra of the reporter molecules. Unlike conventional incoherent SERS this approach generates a coherent stimulated signal of microwatt intensities, opening the field to applications requiring a coherent beam, such as Molecular Holography.
Highlights
Most of the SRS experiments employ a variety of ultra-fast pulsed laser sources[16,17]
Gold/silica nanoparticles with embedded reporter molecules were synthesized by starting with 60 nm gold nanoparticles which are aggregated using a Raman reporter molecule trans-1,2-bis(4-pyridyl)-ethylene (BPE) or 1,2-di(4-pyridyl) acetylene (DPA) into monomers, dimers, trimers etc, embedded in a silica shell
We studied the effects of probe wavelength, pump and probe/Stokes power, polarization and sample concentration on the stimulated Raman signal
Summary
Most of the SRS experiments employ a variety of ultra-fast pulsed laser sources[16,17]. Frontiera et al.[28] reported surface-enhanced stimulated Raman spectroscopy (SESRS) with femtosecond pulsed lasers using gold/silica nanoparticles. Previous studies on pulsed-SESRS show that one can detect a Raman signal for a sample of pico-molar concentration using nanoparticles enhancement and a power density of 0.01 MW cm−228,29.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.