Abstract

Perovskite thin films possess excellent light absorption and light emission properties, as well as a high defect tolerance and high charge carrier mobilities [1]. These properties founded their rapid development in solar cell applications and established this new class of materials as a strong candidate for solution-processed light-emitting applications and on-chip laser sources [2]. So far, the focus has been on investigating the laser behaviour under short pulsed excitation, given the laser death phenomenon observed after a few hundreds of nanoseconds of excitation [3]. Clear CW lasing in perovskites still remains a challenge: It was only observed in a single cation perovskite at a specific temperature of 100 K, where the optical gain originates from small inclusions of a pump-induced crystal phase [3], an unviable approach for practical applications. In contrast, we found that sustained CW operation is possible over a temperature range of ∼80–130 K if the methylammonium (MA) cation is partially replaced by formamidinium (FA) and Caesium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.