Abstract

Monolith catalysts are widely applied for clean up of waste gases [catalytic mufflers, volatile organic compound (VOC) incinerators, reactors for selective catalytic reduction (SCR) of NO{sub x} by NH{sub 3}] in view of their unique combination of low-pressure drops and high gas-solid interfacial areas. The crucial point in continuous heat-transfer models is the evaluation of the effective thermal conductivity coefficients, which are functions both of the physical properties of the two phases and of the monolith geometry. In this work a novel expression for calculation of the radial effective conductivity is derived. The physical consistency of the steady-state continuous model implementing such an expression is then analyzed by comparison with a discrete monolith model. In spite of the just-mentioned limitations, discrete models have been partially validated in the literature against experimental temperature profiles in heated monoliths; thus, they can be regarded as a standard in evaluating the adequacy of the continuum approach. The reference problem of pure heat transfer with constant temperature of the external monolith wall is investigated for these purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.