Abstract
We consider a continuous-variable quantum teleportation protocol between a uniformly accelerated sender in the right Rindler wedge, a conformal receiver restricted to the future light cone, and an inertial observer in the Minkowski vacuum. Using a nonperturbative quantum circuit model, the accelerated observer interacts unitarily with the Rindler modes of the field, thereby accessing entanglement of the vacuum as a resource. We find that a Rindler-displaced Minkowski vacuum state prepared and teleported by the accelerated observer appears mixed according to the inertial observer, despite a reduction of the quadrature variances below classical limits. This is a surprising result, since the same state transmitted directly from the accelerated observer appears as a pure coherent state to the inertial observer. The decoherence of the state is caused by an interplay of opposing effects as the acceleration increases: the reduction of vacuum noise in the output state for a stronger entanglement resource, constrained by the amplification of thermal noise due to the presence of Unruh radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.