Abstract

The continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) is a promising candidate for the immunity to side-channel attacks, but unfortunately seems to face the limitation of transmission distance in contrast to discrete-variable (DV) counterpart. In this paper, we suggest a method of improving the performance of CV-MDI-QKD involving the achievable secret key rate and transmission distance by using zero-photon catalysis (ZPC), which is indeed a noiseless attenuation process. The numerical simulation results show that the transmission distance of ZPC-based CV-MDI-QKD under the extreme asymmetric case is better than that of the original protocol. Attractively, in contrast to the previous single-photon subtraction (SPS)-based CV-MDI-QKD, the proposed scheme enables a higher secret key rate and a longer transmission distance. In particular, the ZPC-based CV-MDI-QKD can tolerate more imperfections of detectors than both the original protocol and the SPS-based CV-MDI-QKD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call