Abstract

A continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol using squeezed states is proposed where the two legitimate partners send Gaussian-modulated squeezed states to an untrusted third party to realize the measurement. Security analysis shows that the protocol can not only defend all detector side channels, but also attain higher secret key rates than the coherent-state-based protocol. We also present a method to improve the squeezed-state CV-MDI QKD protocol by adding proper Gaussian noise to the reconciliation side. It is found that there is an optimal added noise to optimize the performance of the protocol in terms of both key rates and maximal transmission distances. The resulting protocol shows the potential of long-distance secure communication using the CV-MDI QKD protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.