Abstract

For the first time, continuous polycrystalline UiO-66-NH2 thin film supported by a cross-linked Matrimid substrate was successfully fabricated via in situ solvothermal synthesis at room temperature for organic solvent nanofiltration. The integrated structure of the formed UiO-66-NH2 selective layer was inferred by various characterizations including X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. We have demonstrated that pretreatment of the substrate by an organic ligand, the number of solvothermal synthesis cycles, and the reaction time play important roles in MOF film formation. The newly developed UiO-66-NH2 membrane possesses high surface hydrophobicity and mean pore size of 0.89 nm in diameter. It shows an exceptional rejection of 96.33% to Rose Bengal with moderate ethanol permeance of 0.88 L m-2 h-1 bar-1. Benefiting from the extraordinary chemical stability of Zr-MOF crystals, the UiO-66-NH2 membrane shows excellent stability in different solvents, implying their great potential for real applications. This work provides useful insights into the fabrication of continuous UiO-66-type MOF membranes on polymeric substrates, which are very promising in practical separations involving organic solvents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.