Abstract

In order to perform hyperspectral remote sensing, we present a continuous tunable cavity Fabry-Perot interferometer (FPI) by using potassium dideuterium phosphate (DKDP) with two ring electrodes. DKDP has the good performances of high transmittance in the ultraviolet band and large aperture of 20mm (the maximum aperture can be 100mm). Since the resonant frequency of an FPI can be continuously varied with the refractive index change of DKDP caused by the electro-optic effect, the influence of moving parts on resonant frequency can be eliminated. Digital holographic interferometry based on a Mach-Zehnder interferometer is employed to measure the refractive index modulation of DKDP. The parameters of FPI are characterized by using an experimental setup with frequency locking and temperature control technologies. Taking the temperature-measuring high-spectral-resolution lidar based on Rayleigh-Brillouin scattering as an example, a continuous tunable cavity FPI with the full width at half-maximum of 200MHz and free spectral range of 11.12GHz is realized. The results are in good agreement with the designed parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.