Abstract

A regime switching model in continuous time is introduced where a variety of jumps are allowed in addition to the diffusive component. The characteristic function of the process is derived in closed form, and is subsequently employed to create the likelihood function. In addition, standard results of the option pricing literature can be employed in order to compute derivative prices. To this end, the relationship between the physical and the risk adjusted probability measure is explored. The generic relationship between Markov chains and [jump] diffusions is also investigated, and it is shown that virtually any stochastic volatility model model can be approximated arbitrarily well by a carefully chosen continuous time Markov chain. Therefore, the approach presented here can be utilized in order to estimate, filter and carry out option pricing for such continuous state-space models, without the need for simulation based approximations. An empirical example illustrates these contributions of the paper, estimating a stochastic volatility jump diffusion model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.