Abstract

Random walks on random lattices with traps is treated by continuous time random walk (CTRW) method. The equation of walker's survival probability P(t) is obtained in the general case that the walker can decay spontaneously and is able to escape from the well after trapping. In the case of deep traps, the series solution for all time and arbitrary trap concentration with the waiting time distrubution density ψ(t) = ααt-(1-α) exp(-ata), 0 <α≤ 1, is given. Recognizing the experimental facts and Ngai's low energy excitations theory, we point out the importance of dynamic coupling. To describe this dynamic coupling, a theory of CTRW on real random lattices is proposed. In this approach the physical picture is completely different from the curresnt CTRW theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.