Abstract

Abstract In this paper continuous time and discrete random walk models approximating diffusion processes associated with time-fractional and spacedistributed order differential equations are studied. Stochastic processes associated with the considered equations represent time-changed processes, where the time-change process is the inverse to a Levy’s stable subordinator with the stability index β ∈ (0, 1). In the paper the convergence of modeled continuous time and discrete random walks to time-changed processes associated with distributed order fractional diffusion equations are proved using an analytic method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call