Abstract
Using a tight binding model, we investigate the dynamics of an exciton on a disordered extended star graph whose central site acts as an energy trap. When compared with what happens in an ordered network, our results reveal that the disorder drastically improves the excitonic absorption that becomes complete. Moreover, we show the occurrence of an optimal disorder for which the absorption time is strongly minimized, a surprising effect that originates in a disorder-induced restructuring process of the exciton eigenstates. Finally, we also show the existence of an optimal value of the absorption rate that reduces even more the absorption time. The resulting superoptimized trapping process is interpreted as a positive interplay between both the disorder and the so-called superradiance transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.