Abstract
In order to avoid frequent millimeter-wave (mmWave) beam training in high-speed scenarios, in this letter, we propose to exploit the neural ordinary differential equation (ODE) to predict the arbitrary-instant optimal beam between the current and next beam training instants. Specifically, long short-term memory (LSTM) network is utilized to model the beam dynamics based on the received signals of previous periodical beam training, and the ODE solver is adopted to learn the derivative of beam variations, so that the optimal beam at arbitrary instant can be predicted by integrating the derivatives. Simulation results demonstrate that our proposed ODE-LSTM assisted methodology could achieve higher beamforming gain over its state-of-the-art counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.