Abstract
We present a continuous-time link-based kinematic wave model (LKWM) for dynamic traffic networks based on the scalar conservation law model. Derivation of the LKWM involves the variational principle for the Hamilton–Jacobi equation and junction models defined via the notions of demand and supply. We show that the proposed LKWM can be formulated as a system of differential algebraic equations (DAEs), which captures shock formation and propagation, as well as queue spillback. The DAE system, as we show in this paper, is the continuous-time counterpart of the link transmission model. In addition, we present a solution existence theory for the continuous-time network model and investigate continuous dependence of the solution on the initial data, a property known as well-posedness. We test the DAE system extensively on several small and large networks and demonstrate its numerical efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.