Abstract

Dynamic system optimum (DSO) is a special case of the general dynamic traffic assignment (DTA). It predicts the optimal traffic states of a network under time-dependent traffic conditions from the perspective of the entire system. An optimal control framework is proposed in this paper for the continuous-time DSO problem for single-destination traffic networks. Departure time choice is part of this DSO model. Double-queue model is applied to capture the impact of downstream congestion and possible queue spillbacks. Feasibility conditions and model properties are discussed. A constructive procedure to compute a free-flow DSO solution is also proposed. A discretization method is described to the continuous-time systems and numerical results on two test networks are shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.