Abstract

The Continuous Thermodynamics Model (CTM) (Cotterman et al., 1985) is a suitable method to reduce computational cost of multi-component vaporization models. The droplet composition is described by a probability density function (PDF) rather than tens of components in the classical Discrete Component Model (DCM). In the first CTM method developed for this application, the PDF was assumed to be a Γ-function (Hallett, 2000), but some problems had appeared in the case of vapor condensation at the droplet surface (Harstadt et al., 2003). The method put forward in this article, the Quadrature Method of Moments (QMoM), enables one to avoid any assumption on the PDF mathematical form. Following Lage who has developed this method for phase equilibria (Lage, 2007), this article widens the scope of QMoM to the modelling of multi-component droplet vaporization. The different CTM approaches are presented in the first part and the results obtained for a vapor condensation test case are then compared and analysed to illustrate improvements made by QMoM. To cite this article: C. Laurent et al., C. R. Mecanique 337 (2009).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.