Abstract

Sub-micron sized Zn 2SiO 4:Mn 2+ phosphors particles were continuously synthesized in supercritical water with a flow reactor. Colloidal silica or sodium silicate was used as the Si source. Zn and Mn sources were chosen from their nitrates, sulfates, and acetates. The syntheses were carried out at temperatures from 400 to 500 °C, at pressures from 30 to 35 MPa, at NaOH concentrations from 0.014 to 0.025 M, and for residence times from 0.025 to 0.18 s. Sodium silicate formed α- and β-Zn 2SiO 4:Mn 2+ phases regardless of the Zn and Mn sources, while colloidal silica formed phases dependent on the type of Zn and Mn sources used in addition to the use of alkali. As the reaction temperature increased, the crystallinity of α-Zn 2SiO 4:Mn 2+ phase increased and the Mn substitution into the Zn sites of the α-Zn 2SiO 4 phase decreased. Of the conditions studied, the most highly crystalline α-Zn 2SiO 4:Mn 2+ was produced at a temperature of 400 °C, a pressure of 30 MPa, a NaOH concentration of 0.14 M, and a residence time of 0.13 s with Zn and Mn sulfates and colloidal silica as starting materials. The α-Zn 2SiO 4:Mn 2+ fine particles synthesized were round in shape, had an average diameter of 268 nm, and exhibited a green-emission with a peak wavelength of 524 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.