Abstract

One-dimensional systems exhibiting a continuous symmetry can host quantum phases of matter with true long-range order only in the presence of sufficiently long-range interactions1. In most physical systems, however, the interactions are short-ranged, hindering the emergence of such phases in one dimension. Here we use a one-dimensional trapped-ion quantum simulator to prepare states with long-range spin order that extends over the system size of up to 23 spins and is characteristic of the continuous symmetry-breaking phase of matter2,3. Our preparation relies on simultaneous control over an array of tightly focused individual addressing laser beams, generating long-range spin-spin interactions. We also observe a disordered phase with frustrated correlations. We further study the phases at different ranges of interaction and the out-of-equilibrium response to symmetry-breaking perturbations. This work opens an avenue to study new quantum phases and out-of-equilibrium dynamics in low-dimensional systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call