Abstract
Plasma-enhanced chemical vapor deposition (PECVD) is a cost-effective and green process of plasma polymer synthesis that can be used as a gentle but powerful tool for the surface modification of fibers and retains their bulk properties. This paper introduces the notion of a compact and modular device consisting of low-pressure reactor segments that have a specialized function and are adapted for the continuous modification of fiber surface. A roll-to-roll device, designed on an industrial scale, with a PECVD reactor was used for continuous plasma pretreatment and plasma polymerization coating on 1600 glass fibers in a bundle, with the fibers used as reinforcements in a glass fiber/polyester composite. Optimization of the plasma-processing conditions allowed for the improvement of interfacial adhesion between the glass fibers and polymer matrix, resulting in an increase in the shear strength of the polymer composite by 14%, compared to industrially sized fibers coated by wet chemical processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.