Abstract
Abstract The continuous sunflower oil methanolysis catalyzed by quicklime in a packed-bed tubular reactor of 60 cm height was studied at 60 °C using methanol-to-oil molar ratios from 6:1 to 18:1 and weight hourly space velocities from 0.188 to 0.376 (kg/kg cat h). The main goal was to establish the effect of the process variables on the fatty acid methyl esters (FAME) synthesis. A full factorial design was used to evaluate the significance of the three process factors (methanol-to-oil molar ratio, flow rate of the reactants and bed height) statistically. Moreover, the recently reported kinetic model of methanolysis was used to describe variations of FAME and triacylglycerols (TAG) concentrations along the reactor length. The kinetic model predicted the axial concentration profiles of TAG and FAME in the reactor with acceptable accuracy. A high FAME content (98.5%) could be achieved at the two thirds of the bed of quicklime bits without loss of catalytic activity within 30 h of continuous operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.