Abstract

This paper concerns continuous subsonic-sonic potential flows in a two-dimensional convergent nozzle. It is shown that for a given nozzle which is a perturbation of a straight one, a given point on its wall where the curvature is zero, and a given inlet which is a perturbation of an arc centered at the vertex, there exists uniquely a continuous subsonic-sonic flow whose velocity vector is along the normal direction at the inlet and the sonic curve, which satisfies the slip conditions on the nozzle walls and whose sonic curve intersects the upper wall at the given point. Furthermore, the sonic curve of this flow is a free boundary, where the flow is singular in the sense that the speed is only C1/2 Holder continuous and the acceleration blows up. The perturbation problem is solved in the potential plane, where the flow is governed by a free boundary problem of a degenerate elliptic equation with two free boundaries and two nonlocal boundary conditions, and the equation is degenerate at one free boundary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call