Abstract

The problem of multi-agent learning and adaptation has attracted a great deal of attention in recent years. It has been suggested that the dynamics of multi agent learning can be studied using replicator equations from population biology. Most existing studies so far have been limited to discrete strategy spaces with a small number of available actions. In many cases, however, the choices available to agents are better characterized by continuous spectra. This paper suggests a generalization of the replicator framework that allows to study the adaptive dynamics of Q-learning agents with continuous strategy spaces. Instead of probability vectors, agents strategies are now characterized by probability measures over continuous variables. As a result, the ordinary differential equations for the discrete case are replaced by a system of coupled integral--differential replicator equations that describe the mutual evolution of individual agent strategies. We derive a set of functional equations describing the steady state of the replicator dynamics, examine their solutions for several two-player games, and confirm our analytical results using simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.