Abstract

A nondestructive type of Stern-Gerlach effect for an individual electron is described that has been thoroughly demonstrated in experiments at the University of Washington. This "continuous Stern-Gerlach effect" makes use of an inhomogeneous magnetic field provided by a weak auxiliary magnetic bottle and is nondestructive in contrast to all previous versions of the effect. As in the classic Stern-Gerlach effect, changes in the spin state are detected via changes in classical particle trajectories; however, what is observed now is not a deflection of the orbit but rather a change of its frequency in the storage well. A simplified model of the continuous Stern-Gerlach effect at zero temperature is introduced to develop the relation between minimum measurement time required for determination of spin state, driven oscillation amplitude, and zero-point fluctuations in the storage well. The problem of the reduction of the wavefunction by the interaction of the electron with the apparatus is addressed following W. Pauli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call