Abstract

A new, versatile, and straightforward vapor phase deposition (VPD) approach was used to prepare continuous stationary phase gradients (cSPGs) on silica thin-layer chromatography (TLC) plates using phenyldimethylchlorosilane (PDCS) as a precursor. A mixture of paraffin oil and PDCS was placed at the bottom of an open-ended rectangular chamber, allowing the reactive silanes to evaporate and freely diffuse under a controlled atmosphere. As the volatile silane diffused across the length of the TLC plate, it reacted with the surface silanol groups thus functionalizing the surface in a gradient fashion. Characterization of the gradient TLC plates was done through UV visualization and diffuse reflectance spectroscopy (DRS). Visualizing the fluorescent gradient plates under UV radiation shows the clear presence of a gradient with the side closest to the vapor source undergoing the most modification. More quantitative characterization of the shape of the gradient was provided by DRS. The DRS showed that the degree of modification and shape of the gradient was dependent on the concentration of silane, VPD time, and relative humidity. To evaluate the chromatographic performance, a mixture of three aromatic compounds (acetaminophen (A), aspirin (As), and 3-hydroxy-2-naphthoic acid (3H)) was spotted on the high (GHP) and low phenyl (GLP) ends of the gradient TLC plates and the results compared to the separations carried out on unmodified and uniformly modified plates. The GHP TLC plates showed retention factors (Rf) of 0.060 ± 0.006, 0.391 ± 0.006, and 0.544 ± 0.006, whereas the unmodified plate displayed Rf values of 0.059 ± 0.006, 0.092 ± 0.003, and 0.037 ± 0.002 for the analytes A, As, and 3H, respectively. From the Rf values, it was observed that each modified plate exhibited different selectivity for the analytes. The GHP TLC plates exhibited better separation performance, and improved resolution compared to the GLP, unmodified, and uniformly modified plates. Overall, VPD is a new, cost-effective method for creating a gradient on the stationary phase which has the potential to advance chromatographic separation capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.