Abstract
Integration of solar cells and electrochromic windows offers crucial contributions to green buildings. Solar-charging zinc anode-based electrochromic devices (ZECDs) present opportunities for addressing the solar intermittency issue. However, the limited energy storage capacity of ZECDs results in wasted harnessing of solar energy as well as overcharging. Herein, spectral-selective dual-band ZECDs that continuously transport solar energy to indoor appliances by remotely controlling the repeated bleached-tinted cycles during the daytime, are reported. Hexagonal phase cesium-doped tungsten bronze (h-Cs0.32WO3, CWO) nanocrystals are adopted for dual-band ZECDs due to their independent control ability of near-infrared (NIR) and visible (VIS) light transmittance (∆T=73.0%, 700nm; ∆T = 83.7%, 1200nm) and excellent cycling stability (0.8% optical contrast decay at 1200nm after 10000 cycles). The prototype device (i.e., CWO//Zn//CWO) delivers extraordinary thermal insulation capability, displaying a 10°C difference between "bright" and "dark" modes. Furthermore, an Internet of Things (IoT) controller to control the NIR and VIS lights of the CWO//Zn//CWO window wirelessly with a smartphone, empowering the continuous discharging of the solar-charged window during the daytime remotely, is developed. Such windows represent an intriguing potential technology whose future impact on green buildings may be substantial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.