Abstract

Electronic transitions in molecules due to the absorption or emission of light is a complex quantum mechanical process. Their study plays an important role in the design of novel materials. A common yet challenging task in the study is to determine the nature of electronic transitions, namely which subgroups of the molecule are involved in the transition by donating or accepting electrons, followed by an investigation of the variation in the donor-acceptor behavior for different transitions or conformations of the molecules. In this article, we present a novel approach for the analysis of a bivariate field and show its applicability to the study of electronic transitions. This approach is based on two novel operators, the continuous scatterplot (CSP) lens operator and the CSP peel operator, that enable effective visual analysis of bivariate fields. Both operators can be applied independently or together to facilitate analysis. The operators motivate the design of control polygon inputs to extract fiber surfaces of interest in the spatial domain. The CSPs are annotated with a quantitative measure to further support the visual analysis. We study different molecular systems and demonstrate how the CSP peel and CSP lens operators help identify and study donor and acceptor characteristics in molecular systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.