Abstract

BackgroundEnvironmental stimuli can activate a series of physiological and biochemical responses in plants accompanied by extensive transcriptional reprogramming. Long non-coding RNAs (lncRNAs), as versatile regulators, control gene expression in multiple ways and participate in the adaptation to biotic and abiotic stresses.ResultsIn this study, soybean seedlings were continuously cultured for 15 days with high salinity solutions started from seed germination. Strand-specific whole transcriptome sequencing and stringent bioinformatic analysis led to the identification of 3030 long intergenic non-coding RNAs (lincRNAs) and 275 natural antisense transcripts (lncNATs) in soybean roots. In contrast to mRNAs, newly identified lncRNAs exhibited less exons, similar AU content to UTRs, even distribution across the genome and low evolutionary conservation. Remarkably, more than 75% of discovered lncRNAs that were activated or up-regulated by continuous salt stress mainly targeted proteins with binding and catalytic activities. Furthermore, two DNA methylation maps with single-base resolution were generated by using reduced representation bisulfite sequencing, offering a genome-wide perspective and important clues for epigenetic regulation of stress-associated lncRNAs and protein-coding genes.ConclusionsTaken together, our findings systematically demonstrated the characteristics of continuous salt stress-induced lncRNAs and extended the knowledge of corresponding methylation profiling, providing valuable evidence for a better understanding of how plants cope with long-term salt stress circumstances.

Highlights

  • Environmental stimuli can activate a series of physiological and biochemical responses in plants accompanied by extensive transcriptional reprogramming

  • We focused on exploring continuous salt stress-induced Long non-coding RNA (lncRNA) as well as their potential functional roles in soybean roots

  • Genome-wide identification of lncRNAs To systematically identify continuous salt responsive lncRNAs in soybean roots, whole transcriptome sequencing based on rRNA-depletion strategy was performed and generated 44,672,549 and 42,417,198 strand-specific paired-end reads under control (WT) and continuous high salinity (SA) conditions, respectively (Additional file 7: Table S1)

Read more

Summary

Introduction

Environmental stimuli can activate a series of physiological and biochemical responses in plants accompanied by extensive transcriptional reprogramming. Long non-coding RNAs (lncRNAs), as versatile regulators, control gene expression in multiple ways and participate in the adaptation to biotic and abiotic stresses. Compared with messenger RNAs (mRNAs), lncRNAs are expressed at Animal lncRNAs have been extensively studied and proven to be functional in essential biological processes, such as cell cycle control [6], immune surveillance [7], stem cell differentiation [8], development and diseases [9]. In plants, taking advantage of next-generation sequencing (NGS) technologies, large batches of lncRNAs have been identified in the recent 5 years [4, 10,11,12,13,14,15,16,17,18,19,20,21,22].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.