Abstract

In this paper, we study the problem of continuous monitoring of reverse k nearest neighbors queries in Euclidean space as well as in spatial networks. Existing techniques are sensitive toward objects and queries movement. For example, the results of a query are to be recomputed whenever the query changes its location. We present a framework for continuous reverse k nearest neighbor (RkNN) queries by assigning each object and query with a safe region such that the expensive recomputation is not required as long as the query and objects remain in their respective safe regions. This significantly improves the computation cost. As a byproduct, our framework also reduces the communication cost in client---server architectures because an object does not report its location to the server unless it leaves its safe region or the server sends a location update request. We also conduct a rigid cost analysis for our Euclidean space RkNN algorithm. We show that our techniques can also be applied to answer bichromatic RkNN queries in Euclidean space as well as in spatial networks. Furthermore, we show that our techniques can be extended for the spatial networks that are represented by directed graphs. The extensive experiments demonstrate that our techniques outperform the existing techniques by an order of magnitude in terms of computation cost and communication cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.