Abstract

Growth-decoupled cells of Desulfovibrio vulgaris NCIMB 8303 can be used to reduce Pd(II) to cell-bound Pd(0) (Bio-Pd(0)), a bioinorganic catalyst capable of reducing hexavalent chromium to less toxic Cr(III), using formate as the electron donor. Magnetic resonance imaging showed that Bio-Pd(0), immobilized in chitosan and agar beads, is distinguishable from the surrounding gel and is evenly dispersed within the immobilization matrix. Agar-immobilized Bio-Pd(0) and 'chemical Pd(0)' were packed into continuous-flow reactors, and challenged with a solution containing 100 microM Cr(VI) (pH 7) at a flow rate of 2.4 ml h(-1). Agar-immobilized chemical Pd(0) columns lost Cr(VI) reducing ability by 160 h, whereas columns containing immobilized Bio-Pd(0) maintained 90% reduction until 680 h, after which reduction efficiency was gradually lost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.